Mechanism of One-Way Traffic of Hexameric Phi29 DNA Packaging Motor with Four Electropositive Relaying Layers Facilitating Antiparallel Revolution

Zhengyi Zhao,† Emil Khisamutdinov,† Chad Schwartz,† and Peixuan Guo*†

Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States. †These authors contributed equally to this work.

ABSTRACT The importance of nanomotors in nanotechnology is akin to that of mechanical engines to daily life. The AAA+ superfamily is a class of nanomotors performing various functions. Their hexagonal arrangement facilitates bottom-up assembly for stable structures. The bacteriophage phi29 DNA translocation motor contains three coaxial rings: a dodecamer channel, a hexameric ATPase ring, and a hexameric pRNA ring. The viral DNA packaging motor has been believed to be a rotational machine. However, we discovered a revolution mechanism without rotation. By analogy, the earth revolves around the sun while rotating on its own axis. One-way traffic of dsDNA translocation is facilitated by five factors: (1) ATPase changes its conformation to revolve dsDNA within a hexameric channel in one direction; (2) the 30° tilt of the channel subunits causes an antiparallel arrangement between two helices of dsDNA and channel wall to advance one-way translocation; (3) unidirectional flow property of the internal channel loops serves as a ratchet valve to prevent reversal; (4) 5’–3’ single-direction movement of one DNA strand along the channel wall ensures single direction; and (5) four electropositive layers interact with one strand of the electronegative dsDNA phosphate backbone, resulting in four relaying transitional pauses during translocation. The discovery of a riding system along one strand provides a motion nanosystem for cargo transportation and a tool for studying force generation without coiling, friction, and torque. The revolution of dsDNA among 12 subunits offers a series of recognition sites on the DNA backbone to provide additional spatial variables for nucleotide discrimination for sensing applications.

KEYWORDS: bionanomotor · AAA+ ATPase superfamily · one-way traffic mechanism · DNA packaging · virus assembly · bionanotechnology

Biological nanomotors are ubiquitous. The AAA+ (ATPases Associated with diverse cellular Activities) superfamily of proteins is a class of biological nanomotors with a wide range of functions, including DNA translocation, tracking, and riding.1–8 These motors show great potential for use in nanotechnological applications and have proven to be as important to nanotechnology as mechanical motors are to daily life. Most members of this family fold into hexameric arrangements;1,4,5,7,9,11 since all angles are factors of 360°, this hexagonal structure with an interior angle of 120° and external angle of 60° could facilitate bottom-up assembly or simple fabrication to produce a stable structure or arrays. Despite their functional diversity, the common characteristic of these motors is their ability to convert chemical energy obtained from the hydrolysis of the γ-phosphate bond of ATP into a mechanical force and physical motion, a process usually involving a shift in entropy and a change in conformation of the motor building block. This change of conformation generates a gain or loss of affinity for its substrate, leading to mechanical movement by breaking contacts between macromolecules; assembly or disassembly of the complex; induction of substrate unfolding; and promotion of translocation of DNA, RNA, proteins, or other macromolecules. In a cellular environment, these activities underline processes critical to DNA repair, replication,
In both prokaryotic and eukaryotic cells, DNA needs to be transported from one cellular compartment to another. During replication, dsDNA viruses translocate their genomic DNA into preformed protein shells, termed procapsids (for review, see refs 14–17). This entropically unfavorable process is accomplished by a nanomotor that uses ATP as an energy source. The dsDNA translocation motor consists of a protein channel and two molecules that carry out its activities: an ATPase and an enzyme, each one of the six transitional steps, and six ATPs are consumed in one helical turn of 360°. As demonstrated by Hill constant determination, binomial assay, cooperativity and sequential analysis, transition of the same dsDNA chain along the channel wall, but at a location 60° different from the last contact, urges dsDNA to move forward 1.75 base pairs with each step (10.5 bp/turn ÷ 6ATP = 1.75 bp/ATP). Through evolution, nature has conceived a clever revolution machine to translocate the DNA double helix while avoiding the difficulties associated with DNA supercoiling, friction, and torque force during rotation. The revolution without rotation model could resolve a big conundrum troubling the past 35 years of painstaking investigation of the mechanism of these DNA packaging motors. With the revolution mechanism, dsDNA continues to advance without the need for rotation! The one-way traffic property of the motor has previously been reported, but the mechanism has remained enigmatic. In this paper, we elucidate how the motor components coordinate to revolve the dsDNA, ensure a one-way traffic mechanism, and continuously advance dsDNA without reversing.
RESULTS AND DISCUSSION

Unique Structure of Three Coaxial Hexameric Rings of Phi29 Motor Ensure One-Way Traffic. The phi29 DNA translocation motor is composed of three coaxial rings (Figure 1): a hexameric ATPase ring that serves as the force generating machine, a dodecameric channel that serves as a path for dsDNA, and a hexameric RNA ring that connects and gears the connector and the ATPase. The one-way traffic phenomenon has been verified by voltage ramping, electrode polarity switching, and sedimentation force assessment. However, the mechanism for controlling the one-way translocation had not been elucidated.

Most recently, we discovered that the motor uses a revolution instead of a rotation mechanism, which greatly promotes our understanding of this one-way property. We found that the motor uses five different modules to control the direction of translocation: (1) the motor ATPase plays a major role in producing energy to push the dsDNA to advance toward the connector via dsDNA revolution within the channel; (2) the 30° tilt and the antiparallel arrangement between the two helices of dsDNA and the connector channel subunit enhance the translocation of dsDNA in a single direction; (3) the unidirectional flow property of the internal channel loops serves as a ratchet valve to prevent reversal of dsDNA; (4) the 5′–3′ single-direction movement of one strand of dsDNA along the phi29 motor connector channel wall ensures a unidirectional motion; and (5) four relaying lysine layers interact with a single strand of the dsDNA phosphate backbone, resulting in four steps of transition and pausing during dsDNA translocation.

ATPase Pushes the Double-Stranded DNA To Revolve in One Direction along Its Hexameric Channel. The ATPase gp16 controls the one-way traffic by two mechanisms. The first mechanism is the "push through a one-way valve" mechanism, which greatly promotes our understanding of this one-way property. We found that the motor uses five different modules to control the direction of translocation: (1) the motor ATPase plays a major role in producing energy to push the dsDNA to advance toward the connector via dsDNA revolution within the channel; (2) the 30° tilt and the antiparallel arrangement between the two helices of dsDNA and the connector channel subunit enhance the translocation of dsDNA in a single direction; (3) the unidirectional flow property of the internal channel loops serves as a ratchet valve to prevent reversal of dsDNA; (4) the 5′–3′ single-direction movement of one strand of dsDNA along the phi29 motor connector channel wall ensures a unidirectional motion; and (5) four relaying lysine layers interact with a single strand of the dsDNA phosphate backbone, resulting in four steps of transition and pausing during dsDNA translocation.

The following is the force generation mechanism from the ATPase gp16. ATPase exists in a hexameric form (Figure 1B). The binding of ATP to one gp16 subunit stimulates it to adapt to a conformation with a higher affinity for dsDNA, while ATP hydrolysis forces gp16 to assume a new conformation with a lower affinity for dsDNA, thus pushing dsDNA away from one subunit and transferring it to an adjacent subunit (Figure 2). Such physical transition pushes the DNA through the one-way valve channel, urging the dsDNA to advance inward to enter the procapsid but not in reverse. This conclusion was supported by gel shift assays. In the absence of γ-S-ATP, a nonhydrolyzable derivative of ATP, the binding of gp16 to DNA is weak (Figure 3, lane 3). However, after the addition of γ-S-ATP, the binding efficiency of gp16 to DNA increased significantly (Figure 3, lane 4) since the complex is frozen by the nonhydrolyzable ATP. This evidence supports the above conclusion that ATP induces a conformational change in gp16 that causes it to assume a high affinity conformation for dsDNA binding. More significantly, when ATP was added to the gp16–γ-S-ATP–dsDNA complex, rapid ATP hydrolysis was observed and gp16 dissociated from the dsDNA. This indicates that, after hydrolysis, gp16 underpins a further conformational change that produces an external force against the dsDNA and pushes the substrate away from the motor complex by a power stroke. This also agrees with the result shown in Figure 3, lane 5, providing evidence for the existence of two ATPase conformations under different conditions with various ATP concentrations.

The second mechanism of one-way traffic control is directed via dsDNA revolution through the gp16 hexameric ring in one direction (Figure 2). During DNA translocation, only one strand of the dsDNA interacts with the dodecameric channel wall (see Supporting Information), and neither the dsDNA nor the hexameric ATPase rotates (Figure 2). One ATP is hydrolyzed in each transitional step, and six ATPs are consumed for
one helical turn of 360° or 10.5 bp (base pairs). As demonstrated with Hill constant determination, binomial assay, cooperativity, and sequential analysis, transition of the same dsDNA chain along the channel wall, but at a location 60° different from the last contact, urges dsDNA to revolve forward with a single orientation at 1.75 bp (10.5 bp per turn ÷ 6 ATP = 1.75 bp/ATP).51,63

The 30° Tilting of Channel Subunits Causes an Antiparallel Arrangement between Two Helices Resulting in Revolution in a Single Direction. A cone-shaped central channel is encircled by 12 copies of the protein connector subunit gp10 and serves as a pathway for dsDNA translocation.32,33 The wider C-terminal end, 13.6 nm in diameter, is buried inside the procapsid. The narrower N-terminal end is 3.6 nm in diameter and allows dsDNA to enter. The connector is a one-way valve that only allows dsDNA to move into the procapsid unidirectionally,41 as verified by voltage ramping, electrode polarity switching, and sedimentation force assessment.57 All 12 gp10 subunits are tilted at a 30° angle and encircle the channel in a configuration that runs antiparallel to the dsDNA helix residing in the channel. The antiparallel arrangement between the two helices of the connector subunit, and the helix of the dsDNA, can be visualized in an external view (Figure 4A), with dsDNA potentially making contact at each connector subunit (Figure 4).

The antiparallelism exhibited by the helices argues against a bolt and screw rotation model since a screw thread and the corresponding whorl should match. The 30° tilt of the subunits matches perfectly with the 30° transitions that the dsDNA helix exhibits during revolution (360° ÷ 12 = 30°). In each step of revolution that moves the dsDNA to the next subunit, the dsDNA physically moves to a second point on the channel wall, keeping a 30° angle between the two segments of the DNA strand (Figure 4). This structural arrangement enables the dsDNA to touch each of the 12 connector subunits in 12 discrete steps of 30° transitions for each helical pitch (Figure 4). Nature has created and evolved a clever machine that advances dsDNA in a single direction while avoiding the difficulties associated with rotation, such as DNA supercoiling, as seen in many other processes. For reference, the Earth rotates around its own axis every day, but revolves around the sun every 365 days.

Unidirectional Flow of the Internal Channel Loops Provides a Vector Force as a Ratchet Preventing DNA Reversal. The phi29 connector allows dsDNA to translocate from its N-terminal (narrower end) to its C-terminal (wider end).41 In our most recent findings, like other ion channels that play a critical role in regulating ions in and out of membranes, the phi29 motor channel gates in three discrete steps in response to high voltage or

Figure 2. Schematic of the revolution mechanism employed in translocating genomic DNA. The binding of ATP to one subunit stimulates gp16 to adapt to a conformation with a higher affinity for dsDNA. ATP hydrolysis forces gp16 to assume a new conformation with a lower affinity for dsDNA, thus pushing dsDNA away from the subunit and transferring it to an adjacent subunit. Rotation of the hexameric ring or the dsDNA is not required since the dsDNA chain is transferred from one point on the phosphate backbone to another. For the revolution motion of genomic DNA along the 12 subunit channel wall, please see Supporting Information.

Figure 3. EMSA of eGFP-gp16 configurations with short Cy3-dsDNA and ATP or γ-S-ATP. The GFP channel shows migration of the ATPase, and the Cy3 channel shows the migration of the dsDNA. The eGFP channel lane 5 clearly shows two distinct bands of gp16 after addition of ATP, indicating the presence of two conformations of gp16.
ligand binding.57,64 We have constructed a mutant
connector in which the internal loops, which have been
believed to play a role in DNA packaging, with residues
229–24633,61 were deleted. The viral assembling activ-
ities of procapsids bearing this mutant connector were
assessed by \textit{in vitro} virion assembly. It was found that
procapsids with the loop-deleted connector failed to
produce any virions, as compared to wild-type procap-
sids in which the assembly activity was about 1 \times 10^8
pfu/mL (plaque forming units per milliliter) (Figure 5B).
Other findings from our lab and other groups have
revealed that the channel loops play a critical role in the
one-way traffic mechanism of dsDNA and that the
packaged dsDNA reverses and slides out after being
packaged into the mutant procapsid.17,61,64
The channel loops may act as a clamp during DNA transloca-
tion and prevent the DNA from sliding out, supporting
the push through a one-way valve model in which the
direction of DNA migration is regulated by the loops
inside the channel61 (Figure 5A).

The application of single-pore conductance assay
revealed a one-way traffic of normal connector chan-
el and two-way traffic of internal channel loop-de-
leted connector (Figure 6). DNA traffic was probed by
applying a ramping potential (Figure 6, left panel) and
by switching the voltage polarity (Figure 6, right panel)
that crossed the membrane. Due to the negative charge
of the phosphate backbone, DNA migrates from the
negative toward the positive electrode. In the presence
of DNA in both \textit{cis}- and \textit{trans}-chambers under a ramping
potential, DNA translocated \textit{via} the single-channel BLM
only at the negative potential when channel entrance
(the narrow end which locates outside the procapsid)
faced the negative electrode (Figure 6A). On the con-
trary, DNA translocation was observed only at the
positive potential when the channel turned upside
down (Figure 6B). Furthermore, in the presence of
DNA in both \textit{cis}- and \textit{trans}-chambers under a constant
voltage, DNA translocation \textit{via} the single channel could
be turned on and off depending on the polarity of the
voltage57 (Figure 6E). This correspondence to polarity
switching was dependent upon the orientation of the
connector in the BLM, which was determined by nano-
gold blocking assay.57 When no DNA translocation was
observed under negative potential, switching the volt-
age to positive potential resulted in DNA translocation
(Figure 6E) and \textit{vice versa}. The results strongly support
that dsDNA can only pass through the wild-type con-
nector channel in one direction. When the internal loops
of the connector were deleted, the two-way traffic of

Figure 4. Illustration showing the antiparallel configuration between connector subunit and DNA helix. External view (A) and
internal view (B) of the antiparallel configuration of connector and DNA as dsDNA revolves through the connector. One-
twelfth of a dsDNA helix is 30° (C), which is the angle dsDNA revolves to advance between two adjacent connector subun-
ts (D). The contact at every 30° for twelve 30° transitions resulted in translocation of one helical turn of the dsDNA through
the connector (B).
DNA was observed using both scanning potential (Figure 6C) and polarity switching (Figure 6F). So far, the two-way traffic of DNA has not been detectable for the wild-type connector under the current experimental conditions. In summary, the conductance assay with specific mutant connectors demonstrated that the internal flexible loops are essential for the one-way traffic of the motor. Together with the finding that procapsids harboring modified connectors with internal channel loop mutation or deletion lose the capability to retain DNA after packaging, as well as our finding that the procapsids harboring modified connectors with internal loop deletion decrease the virion assembly efficiency (Figure 5B), we concluded that the internal flexible loops play a key role in the one-way traffic property of viral DNA packaging motors during DNA translocation.

The 5'-3' Single-Direction Movement of One DNA Strand along the Channel Wall Ensures Unidirectional Motion. Our extensive investigations into data modeling and literature have led to the following conclusions: the motor only contacts one strand, not both, of the dsDNA in the 5' to 3' direction in order to revolve along the connector channel. While single-stranded DNA cannot be packaged, dsDNA with the 3'-end extended can revolve along the channel one helical turn of 10.5 bp. This notion has been based upon the revolution (but not the rotation) model and agrees with our studies on phi29 DNA packaging of phi29 genomic DNA containing single-stranded gaps. The gap-containing dsDNA were produced in vitro, and the DNA packaging function was assayed in agarose gel electrophoresis using the defined in vitro phi29 assembly system. We found that phi29 DNA with single-stranded gaps was not packaged at full genome length. Because of such, we created two gaps: one at the left end (5883 bp) and one at the right end (14,421 bp) of the phi29 DNA genome. Only the 5.9 kb DNA fragment between the left end of the genome and the first gap was packaged. The right end fragment was not packaged. The result suggests that a single-stranded gap in the DNA is a structural alteration that can cause the packaging motor to stop, and that the packaging direction is from 5' to 3' since the phi29 packaged the left end of the genome first. Our model is supported by the finding by Black and co-workers who reported that a 3' single-stranded overhang was packaged under conditions extending from the 100 bp duplex. A 3' extension up to 12 bases did not inhibit translocation, whereas 20 or more bases significantly blocked the T4 motor in DNA packaging. The 20 base gap was consistently found to be vulnerable, whether it was at the 3' end or in the middle of the DNA strand. These results support the notion that the motor can revolve one complete turn of 360° with a single-stranded structure and that dsDNA revolves along the motor using a single strand in the 5' to 3' direction. The data are also supported by experimental data involving optical tweezers showing that dsDNA is processed by having contact with an unknown component on one strand of DNA in the 5' to 3' direction; the modification of phi29 DNA in the 5' to 3' direction stopped dsDNA packaging, as well, that modification with 10 bases is tolerable, but 11 bases is not.

Four Electropositive Relaying Layers Interact with the Electronegative DNA Backbone, Resulting in Four Steps of Transitional Pauses. Connector crystal analysis has revealed that the dominantly negatively charged phi29 connector interior channel surface is decorated with 48 positively charged lysine residues, existing as four relaying 12 lysine rings derived from the 12 protein subunits that enclose the channel (Figure 7). The four lysine rings (K200, K209, K234, and K235) are scattered inside the channel and have been proposed to play a role in DNA...
translocation. However, we have found that mutation of one layer of the four lysine rings does not significantly affect motor action.

Here we further investigate the detailed interaction of lysine residues with the bacteriophage genome during translocation. When DNA revolves through the connector, it goes through 12 subunits of the connector per cycle, and we hypothesized that only one strand touches the channel wall. Thus, during the entire 360° revolution, the negatively charged phosphate backbone will be in contact with the positively charged layer of the lysine ring. One 360° revolution corresponds to 10.5 bp for each helical turn of the B-type dsDNA. This results in an imperfect match (10.5 ÷ 12 = 0.875) of sequential contact between the base, which has the negatively charged DNA phosphate group, and the channel subunits, which contain the positive-charged lysine ring (Figure 7).

On average, each of the four lysine layers will be responsible for contact with three subunits (12 subunits ÷ 4 layers = 3 subunits). This value indicates that, for every three subunits, 2.6 bp (0.875 × 3 = 2.6 bp) will be translocated through the connector. At each step, a 12.5% mismatch occurs (10.5 ÷ 12) 100% = 12.5%. After three transactions with three subunits, a 37.5% variation will occur (12.5% × 3 = 37.5%), and the charge/charge interaction will be weakened due to distance. The phosphate interacts with the optimally charged lysine in the next subunit, and the distance variation due to this mismatch will be compensated for by introducing next lysine layer (Figures 7 and 8). The contact point between the phosphate and the lysine then shifts to the next lysine ring. The transition results in a slight pause during DNA advancement. When dsDNA translocates through three subunits, the heading phosphate of the DNA will have to transition into

Figure 6. Single-pore conductance assay for DNA translocation through phi29 connector. Unidirectional translocation of dsDNA through wide-type phi29 connector was shown under a ramping potential from −100 mV to +100 mV (A,B) and by switching polarity (E). Single-stranded DNA exhibits a two-way traffic property through internal loop-deleted connector, as shown by ramping potential (C) and by switching polarity (F). (D) Negative control without DNA.
the next lysine layer in order to compensate for the imperfect match between the phosphate and each lysine residue during DNA advancement through the connector. Thus, the four layers of the lysine ring will result in four pauses of DNA translocation. We found that the mutation of only one layer of the four lysine rings does not significantly affect motor function, indicating that the interaction of the lysine with the phosphate is only the auxiliary force and not the main force necessary for motor action. This also indicates that the uneven speed of the four-step pauses caused by the four lysine layers is not the essential function of the motor. This would explain why the lysine layer and the 10.5 base per patch are not a perfect match, and why the distance of the layers are not constant.

Based on the crystal structure, the length of the connector channel is ~7 nm. Vertically, these four lysine layers fall within a 3.7 nm range and are spaced approximately ~0.9 nm apart. The lysine residues K234 and K235 lie in the inner loop of the connector between residues 229 to 246, which were missing in the crystal structure; so the two residues close to the boundary of the inner loops were represented and used to estimate the location (Figure 7). Since B-type dsDNAs have a pitch of 0.34 nm/bp, ~2.6 bp per rise along its axis between two lysine layers can be used in translocation (0.9 nm/0.34 nm-bp⁻¹ = ~2.6 bp). This value agrees with the recent data demonstrating the presence of four steps of pauses during the dsDNA translocation process, as measured by optical tweezers using single-molecule analysis. It was demonstrated that each step translocated 2.5 base pairs and each circle translocated 10 base pairs of dsDNA. The step size is in good agreement with our finding described above. However, the authors interpreted the four pauses caused by four lysine rings into the rotation model driven by four motor ATPase. Thus, they found that their model is in disagreement with both the hexamer and pentamer models. Subsequently, the authors
During the movement, a DNA strand passes all four lysine layers. The group of lysine residues (shown by red spheres in each subunit). The interaction of DNA and lysine is shown by black spheres.

The phi29 DNA packaging motor is a pentamer, but one subunit of the pentamer was inactive, resulting in four motor subunits that generate four power strokes or bursts in rotation. Their rotation model is contradictory to our revolution mechanism described above, showing that the four pauses are due to the presence of four lysine layers in the connector (Figures 7 and 8).

MATERIALS AND METHODS

In Vitro Virion Assembly Assay. Purified in vitro components were mixed and subjected to the virion assembly assay, as previously described. Briefly, newly assembled infectious virions were inoculated with Bacillus bacteria and plated. Activity was expressed as the number of plaques formed per volume of sample (pfu/mL).

Electrophoretic Mobility Shift Assay (EMSA). The fluorescently tagged protein was shown to possess similar assembly and packaging activity as compared to wild-type. Cy3-dsDNA (40 bp) was prepared by annealing two complementary DNA oligos containing Cy3 labels (IDT) at their 5' ends and purifying them with a 10% polyacrylamide gel. Samples were prepared in 20 μL of buffer A (20 mM Tris-HCl, 50 mM NaCl, 1.5% glycerol, 0.1 mM MgCl₂). Samples were incubated at ambient temperature for 20 min and then loaded onto a 1% agarose gel (44.5 mM Tris, 44.5 mM boric acid) and electrophoresed at 4°C for 1 h at 8 V/cm. The eGFP-gp16 and Cy3-DNA samples were analyzed by a fluorescent LightTools Whole Body Imager using 488 and 540 nm excitation wavelengths for GFP and Cy3, respectively.

Single-Pore Conductance Assay for DNA Translocation. The preparation of connector-containing liposomes, the insertion of the connector into the planar bilayer lipid membrane (BLM), and the electrophysiological measurements of DNA through the channel have been described previously. Briefly, the phi29 connector was inserted into a BLM by vesicle fusion after obtaining connector reconstituted liposomes. A BLM chamber (BCH-1A from Eastern Sci LLC) was used to form horizontal membrane, and a thin Teflon film with an aperture of 70–120 μm (TP-01 from Easter Sci LLC) or 180–250 μm (TP-02) in diameter was used as a partition to separate the chamber into cis- and trans-compartments. For connector insertions, 1–2 μL of liposome stock solution was diluted by 10–20-fold and was directly added to the cis-compartment. A pair of Ag/AgCl electrodes connected directly to the head stage of a current amplifier was used to measure the current across the BLM. The current was recorded by an Axopatch 200B patch clamp amplifier coupled with the Axon DigiData 1322A or Axon DigiData 1440 analog-digital converter (Axon Instruments). All of the electrical signals were obtained from the trans-compartment. Data were low band-pass filtered at a frequency of 1 kHz and acquired at 500 μs intervals per signal. The PClamp 9.1 software (Axon Instruments) was used to collect the data, and the software Clamplt was used for data analysis. Conductance measurements were determined using the slope of the current trace induced by a ramp voltage after a definite insertion of a gp10 connector was observed. Solution conductivity was measured using a Pinnacle 542 conductivity/pH meter (Corning Inc.).

Conflict of Interest: The authors declare the following competing financial interest(s): Peixuan Guo is a co-founder of Kylin
REFERENCES AND NOTES

37. Xiao, F.; Sun, J.; Coban, O.; Schoen, P.; Wang, J. C.; Cheng, R. H.; Guo, P. Fabrication of Massive Sheets of Single Layer

