Abstract:
Using an RNA-powered nanomotor, University of Cincinnati (UC) biomedical engineering researchers developed an artificial pore able to transmit nanoscale material through a membrane.

Nanotech Research Featured in Nature Nanotechnology Journal

CINCINNATI, OH | Posted on September 28th, 2009

In a study led by UC biomedical engineering professor Peixuan Guo, PhD, members of modified core of a nanomotor, a microscopic biological machine, into a lipid membrane. This enabled them to move both single- and double-stranded DNA through the membrane.

Their paper, "Translocation of double-stranded DNA through membrane-adapted phi29 motor" appear in the journal Nature Nanotechnology, Sept. 27, 2009. The engineered channel could...
sensing, gene delivery, drug loading and DNA sequencing," says Guo.

Guo derived the nanomotor used in the study from the biological motor of bacteriophage bacteria. Previously, Guo discovered that the bacteriophage phi29 DNA-packaging motor genetic material RNA to power its DNA genome through its protein core, much like a screw

"The re-engineered motor core itself has shown to associate with lipid membranes, but we n punch a hole in the lipid membrane," says David Wendell, PhD, co-first author of the paper professor in UC's biomedical engineering department. "That was one of the first challenges for the motor to encode into this engineered environment."

In this study, UC researchers embedded the re-engineered nanomotor core into a lipid sheet, allowing the passage of double-stranded DNA through the channel.

Guo says past work with biological channels has been focused on channels large enough to allow the passage of double-stranded DNA through the channel.

"Since the genomic DNA of human, animals, plants, fungus and bacteria are double stranded, a single pore system that can sequence double-stranded DNA is very important," he says.

By being placed into a lipid sheet, the artificial membrane channel can be used to load double other therapeutic material into the liposome, other compartments, or potentially into a cell.

Guo also says the process by which the DNA travels through the membrane can have larger

"The idea that a DNA molecule travels through the nanopore, advancing nucleotide by nucleotide, is the development of a single pore DNA sequencing apparatus, an area of strong national interest in the general field of biotechnology and medicine."

Using stochastic sensing, a new analytical technique used in nanopore work, Wendell says to identify material, like DNA, moving through the membrane.

Co-first author and UC postdoctoral fellow Peng Jing, PhD, says that, compared with traditional methods, the successful embedding of the nanomotor into the membrane may also provide researchers with new insights into the DNA packaging mechanisms of the viral nanomotor.

"Specifically, we are able to investigate the details concerning how double-stranded DNA travels through the protein channel," he says.

The study is the next step in research on using nanomotors to package and deliver the infected cells. Eventually, the team's work could enable use of nanoscale medical devices.

"This motor is one of the strongest bio motors discovered to date," says Wendell, "If you can build a nanoscale rotor or a nanoscale machine ... you're converting the force of the motor into something useful."

Funding for this study comes from the National Institutes of Health's Nanomedicine Development director of one of eight NIH Nanomedicine Development Centers and an endowed chair in UC.

Coauthors of the study include UC research assistant professor David Wendell, PhD, postdoc graduate students Jia Geng and Tae Jin Lee and former postdoctoral fellow Varuni Subram lab at Purdue University. Carlo Montemagno, dean of the College of Engineering and Colle contributed to the study.

####

For more information, please click [here](http://www.nanotech-now.com/news.cgi?story_id=34829)

Contacts:
Katy Cosse
(513) 558-0207
kathryn.cosse@uc.edu

Copyright © University of Cincinnati
If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for content.

Related News Press

News and information

- **Students learn about 'nanoscience'** December 10th, 2009
- **Professor Wolfgang Heckl appointed to supervisory board of MagForce Nanotechnologies**
- **Gossamer Teases More Energy from Thin Film Solar** December 10th, 2009
- **SEMATECH and SUSS MicroTec Collaborate on Next-generation Device Testing Solutions**

Nanomedicine

- **Russia’s Human Stem Cell Institute raises 143.5 mln rbl in IPO** December 10th, 2009
- **Magnetic Liquid Separates Blood Cells** December 10th, 2009
- **Nanostart majority-owned MagForce Nanotechnologies AG names Dr. Peter Heinrich as CEO**
- **JPK announces the ForceRobot®300 system for single molecule force spectroscopy studies**

Discoveries

- **UD scientists take theoretical research on 'nasty' molecule to next level** December 8th, 2009
- **New imaging technique to change the way we see disease** December 7th, 2009
- **Ames Laboratory Researchers Predict A Repulsive Casimir Effect Using Exotic Chiral Molecule** December 2009
- **Nanomaterial withstands 850ºC** December 7th, 2009

Announcements

- **Magnetic Liquid Separates Blood Cells** December 10th, 2009
- **More Colorful Displays with Quantum Dots** December 10th, 2009
- **Malvern Instruments rheology specialist wins award for doctorate** December 10th, 2009
- **Absorbing Hydrogen Fluoride Gas to Enhance Crystal Growth** December 10th, 2009

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for content.